

Continuous Monitoring to Approximate Total Phosphorus Concentrations Through Implementation of Regression Equations

Ben Hammond Woolpert Inc. Columbia, SC

What is Our Goal?

- Comprehensive Water Quality Data
 - + Improved / more technology
 - + More Data
 - + Higher frequency data collection
- + Water Quality Awareness
 - + Are conditions improving or degrading?

Options for Better Awareness

- Watershed Models
 - + Scale and detail
 - + Minimal disaggregation
 - + Assumptions and lumped parameters
- Continuous Monitoring
 - + Potential real-time parameter fluctuations
 - + Sensors for priority pollutants
- + Middle Ground- Regression
 - What we know correlated with what we don't know enough about
 - + Fewer assumptions
 - Can guide sample collection in addition to estimating pollutant loads

Don't Be Fooled

- Regression does NOT replace traditional sampling methods ENTIRELY
- Regression Accuracy
 - + Is not equal to laboratory accuracy, but...
 - Projected loads estimates are likely better, given the frequency of data collection
- + Regression is not inexpensive
 - + Laboratory costs can be cost prohibitive
- + You need
 - + Time / patience
 - Necessity
 - + \$\$

Then Why Regression

- + Higher Frequency = More Detail
- + More Detail = More comprehensive analysis
 - + Spatial: Where is the problem?
 - + Temporal: When does the problem occur?
 - + Hydrologic: Is stormwater runoff a problem?
- Traditional Methods ALONE can generate more questions than answers
 - + What happened when you were not collecting samples?

Regression Analysis

- + Six continuous monitoring stations
 - + In series along the same river
 - + YSI Multi-parameter sondes
 - + Trend and hot spot analysis
 - + Total phosphorus regression
- Two years of data collection
 - + Sample n varied at all 6 sites
- + 1 year of validation...so far
- + Work in progress

Regression Analysis

- Sonde data as surrogates
 - + Turbidity
 - + Specific conductivity
 - + Temperature
 - + pH
 - + Dissolved oxygen

	I .						
Collection Time	Sonde	Sonde	Sonde	Sonde	Sonde	Total Phosphorus	
	Dissolved Oxygen (field)	pН	Specific Conductance at 25 C	Temperature	Turbidity		
12/8/2008 10:30	11.09	7.13	264	48	11.09	0.07	
4/23/2009 10:45	9.76	6.62	193	58.88	6.1	0.05	
5/21/2009 10:30	8.49	6.92	240	65.7	4.4	0.1	
9/18/2009 8:30	7.12	6.88	63	70.87	198.7	0.24	
9/18/2009 11:15	7.28	6.98	92	71.33	184.3	0.33	
10/12/2009 9:15	8.34	7.37	195	67.35	4.4	0.09	
10/12/2009 10:15	8.43	7.34	183	66.7	15	0.14	
10/12/2009 11:15	8.64	7.26	126	65.14	71.4	0.27	
10/12/2009 13:00	8.74	7.1	79	64.01	117.7	0.22	
10/12/2009 14:15	8.84	7.13	73	63.91	92	0.27	
12/2/2009 9:45	10.53	7.06	124	49.18	134.4	0.14	
12/2/2009 11:15	10.69	7.02	105	48.88	109.9	0.24	
12/2/2009 13:30	10.99	7.01	78	48.17	168.5	0.3	
12/3/2009 8:15	10.42	6.81	70	50.87	94.3	0.18	
12/3/2009 13:45	10.07	6.79	76	52.23	69.4	0.22	
5/3/2010 13:30	7.8	6.98	69	69.35	94	0.2	
5/3/2010 15:45	7.88	7.01	69	69.02	81.7	0.23	
5/4/2010 9:00	8.36	7.15	158	67.38	24.9	0.12	
E1410040 40 00	0.07	7 40	450	00.40	40.0		

 Paired Samples used to develop regression equations

Methods

- + Best Fit Plots, ANOVA Statistics, Residuals
 - + Is there a linear relationship
- + Simple and Multiple Linear Regression
 - + Evaluated using Predicted Residual Sum of Squares (PRESS) statistic and RMSE.
- + This is not data fitting

Methods

- + Site Specific Equations
 - + We considered watershed scale as well as upstream and downstream of a major continuous point source
 - Site specific statistically more significant as a result of many inputs between sites
- + Storm vs. Baseflow Equations
 - + Equations specific to the conditions that were monitored during the regression development process
 - Not necessarily intended to detect all sources, e.g. SSOs

Methods

- Choosing surrogates
 - + We let data decide
 - + Turbidity and SC were best
 - + Why not flowrate as a surrogate? Will include in updates
 - Continued work might include characteristic variables, essentially establishing two relationships using one equation

Results of Regression Analysis

- + 6 site-specific equations
- PRESS statistic used to select site-specific equation
- + Single and Multiple Linear equations

Site	Regression Equation	n	PRESS	RMSE	R2	Adjusted R2	F
Site #1	0.553 + 0.073*log(turb) - 0.309*log(SC)	25	0.060	0.043	0.77	0.75	38
Site #2	0.168 - 0.001*SC + 0.001*Turb	25	0.041	0.043	0.87	0.86	73
Site #3	0.107 + 0.001*turb	26	0.074	0.049	0.63	0.61	40.0
Site #4	0.077 + 0.002*turb	20	0.044	0.039	0.86	0.85	107
Site #5	0.110 + 0.001*turb	21	0.045	0.053	0.78	0.77	66
Site #6	-0.207 + 0.110*logturb + 0.095*logSC	19	0.040	0.041	0.39	0.31	5.1

Site #1 Site #3 Rank 11 Egn 1 z=a+bx+cy r*2=0.86908416 DF Adj r*2=0.8503819 FitStdErr*0.038311627 Fstat*73.023449 Rank 25 Eqn 81 z=a+blnx+clny r*2=0.77395315 DF Adj r*2=0.74166074 FitStdErr=0.044417755 Fstat=37.662478 a=0.16802374 b=-0.0014324335 c=0.001096012 a=0.55281646 b=-0.13437631 c=0.031834204 ◆Total Phosphorus vs. Turbidity 0.36 0.3 0.4 0.45 0.4 0.35 0.4 0.45 0.25 0.35 0.3 0.35 0.4 0.3 0.25 0.35 0.3 0.25 0.2 0.3 0.2 0.25 TP, mg/L 0.15 0.25 mg/L 0.15 0.2 0.1 0.2 0.1 0.15 0.05 0.15 0.05 0.1 0.1 0.05 90 0.05 0.05 y = 0.0011x + 0.1065 50 $R^2 = 0.6251$ 60 40 50 30 100 200 40 Turbidity, NTU Turbidity, NTU Turbidity, NTU Site #6 Site #4 Site #5 Rank 22 Egn 81 z=a+blnx+clny 0.6 -0.45 r^2=0.35071245 DF Adj r^2=0.21157941 FitStdErr=0.044148217 Fstal=4.0511225 Total Phosphorus vs. Turbidity Total Phosphorus vs. Turbidity a=-0.13882423 b=0.029639657 c=0.041521192 0.5 0.35 0.25 0.3 0.4 0.25 0.2 0.15 dL 0.2 0.2 TP, mg/L 0.15 0.1 0.1 0.05 250 y = 0.0016x + 0.0772 0.1 $R^2 = 0.8555$ 115,50,75,100 15 50 25 00 0 0.05 y = 0.0014x + 0.11 R² = 0.7771 100 50 Turbidity, NTU

100 Turbidity, NTU

180

Turbidity, NTU

Regression Validation Results

Note: Validation Samples are not serially correlated

Application of Regression Equations

Conclusions

- + Identify the problem...then address the problem
- + Study results are encouraging
- + Enhancements to existing regression equations
 - + Flow as surrogate
 - + Characteristic variable
 - + Antecedent moisture condition
- The goal is to get "it" right
 - + Appropriate management of our financial resources can lead to saving or improving our natural resources.

References

- + Rasmussen, T.J., Ziegler, A.C., and Rasmussen, P.P., 2005, Estimation of constituent concentrations, densities, loads, and yields in lower Kansas River, northeast Kansas, using regression models and continuous water-quality monitoring, January 2000 through December 2003: US Geological Survey Scientific Investigations Report 2005-5165, 117p.
- + Rasmussen, T.J., Lee, C.J., and Ziegler, A.C., 2008, Estimation of constituent concentrations, loads, and yields in streams of Johnson County, northeast Kansas, using continuous water-quality monitoring and regression models, October 2002 through December 2006: US Geological Survey Scientific Investigations Report 2008-5014, 103 p.
- + Jones, Amber Spackman, Stevens, David K., Horsburgh, Jeffery S., and Mesner, Nancy, 2011, Surrogate Measures for Providing High Frequency Estimates of Total Suspended Solids and Total Phosphorus Concentrations: Journal of the American Water Resources Association, April 2011.
- Helsel, Dennis R., and Hirsch, Robert M., USGS TWRI Book 4 Chapter A3, Statistical Methods in Water Resources

